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AN ESTIMATE OF TKE CHEMICAL K I N E T I C S  BEHIND NORMAL 

SHOCK WAVES I N  MIXTURES OF CARBON D I O X I D E  

AND NITROGEN FOR CONDITIONS 

TYPICAL OF MARS ENTRY 

By Robert L. McKenzie 
Ames Research Center 

The chemical k i n e t i c s  behind normal shock waves i n  mixtures of carbon 
dioxide and ni t rogen a r e  s tudied.  Pa r t i cu la r  emphasis i s  placed on a shock 
speed of 8 km/sec i n  ambient gas compositions containing 5 ,  10, and 50 percent 
C02  by volume. These conditions are t y p i c a l  of those an t i c ipa t ed  f o r  e n t r y  
i n t o  the  Martian atmosphere. Ambient dens i ty  i s  var ied from 10-6 t o  10-1times 
t h a t  of t h e  e a r t h  sea- level  dens i ty .  The species  considered are C 0 2 ,  N2, CO, 
NO, CN, 02,C ,  0, and N .  A system of 17 reac t ions  i s  i n i t i a l l y  assumed and 
la te r  reduced t o  9 by removing those found ins ign i f i can t  t o  the  gross  thermo­
chemical behavior.  The methods used f o r  es t imat ing exchange reac t ion  r a t e s  are 
discussed i n  d e t a i l ,  and a scheme f o r  co r re l a t ing  experimental ac t iva t ion  ener­
g i e s  i s  suggested. General features of t he  nonequilibriwn chemistry are pre­
sented followed by an ana lys i s  of t h e  uncer ta in t ies  due t o  possible  e r r o r s  i n  
estimated reac t ion  r a t e s .  Pa r t i cu la r  consideration i s  given t o  the  k i n e t i c s  
of CN f o r  shock speeds of 4 t o  8 km/sec. The CN concentration i s  shown t o  
r ap id ly  overshoot i t s  equi l ibr ium value f o r  most ambient d e n s i t i e s  and shock 
v e l o c i t i e s  an t i c ipa t ed  during en t ry  i n t o  the  Martian atmosphere. 

INTRODUCTION 

Recent s tud ie s  of high-speed en t ry  i n t o  postulated Martian atmospheres 
(e  .g., r e f .  1)have indicated the  need f o r  an improved understanding of t h e  
chemical k i n e t i c s  i n  shock heated mixtures of  carbon dioxide and ni t rogen.  
Numerous inves t iga t ions  have d e a l t  with high temperature nonequilibrium phenom­
ena i n  a i r  and i t s  cons t i tuents  ( e .g . ,  refs .  2 and 3 ) ,  but r e l a t i v e l y  f e w  have 
concerned other  gases .  Howe and Sheaffer ( r e f .  4) estimated the  chemical 
k i n e t i c s  behind normal shock waves i n  pure CO,, and Bortner ( r e f .  5 )  considered 
mixtures of C02  and If2 but  made only a cursory estimate of t h e  reac t ion  system. 

This study i s  intended t o  provide a more inclusive estimate of t h e  
expected thermochemical behavior behind s t rong shock waves i n  mixtures of C02 
and N2 based on the experimental reac t ion- ra te  da ta  ava i lab le  t o  da te .  The 
object ive must be l imi ted ,  however, t o  es tab l i sh ing  only t h e  q u a l i t a t i v e  
nature  of  t h e  post-shock chemical k i n e t i c s  s ince current  experimental react ion-
rate  da ta  are sparse and many t h e o r e t i c a l  r a t e  es t imates  are incorporated.  I n  
l i g h t  of t he  l imi ted  experimental da t a ,  it i s  a l s o  un jus t i f i ed  t o  r e t a i n  any 
considerat ion of physical  phenomena which have less t h a t  a major e f f ec t  on the  
results. Regardless of these unavoidable inaccuracies ,  t he  q u a l i t a t i v e  



cha rac t e r i s t i c s  of these  results may s t i l l  be shown t o  be unique. This is  
accomplished b y  estimating reasonable limits t o  the  e r r o r s  i n  t h e  t h e o r e t i c a l  
reac t ion  r a t e s  and applying them t o  obtain extreme k i n e t i c  p r o f i l e s .  The 
r e su l t i ng  p r o f i l e s  are then compared f o r  a l l  cases .  

The cont ro l l ing  k i n e t i c  mechanism of the  chemical system i s  estimated by 
considering a l l  reac t ions  among a prescr ibed set of species  which a r e  thought 
t o  have possible  s ignif icance t o  the  gross  thermochemical behavior. Those 
react ions and species  which then prove t o  be of secondary importance a r e  
eliminated and the  small e f f e c t s  of t h e i r  absence demonstrated. 

The flow-field model chosen i s  t h a t  behind a normal shock wave because of 
i t s  s impl ic i ty  and d i r e c t  appl ica t ion  t o  most shock-tube experiments. The 
p r inc ipa l  quan t i t i e s  def ining t h e  shock-wave conditions a r e  shock speed, 
ambient gas composition, and ambient dens i ty .  Ambient temperature, whose value 
is inc identa l  t o  t he  r e s u l t s ,  w a s  f ixed  a t  2000 K . l  A s ing le  shock speed of 
8 km/sec was se lec ted  for de ta i l ed  study but  lower speeds t o  4 km/sec a r e  a l s o  
discussed. The speed of 8 km/sec w a s  chosen p r inc ipa l ly  because it represents  
a t y p i c a l  Mars e n t r y  condition and a l s o  because it serves t o  def ine the  pre­
dominant chemical mechanisms f o r  the  lower speeds considered. The ambient 
dens i t i e s  considered a r e  t o  1 0 - l t i m e s  the ea r th  sea-level dens i ty .  These 
values bracket  t he  high-speed f l i g h t  regime of aerodynamic i n t e r e s t  during any 
planetary en t ry .  The ambient gas compositions se lec ted  a r e  5 ,  10, and 50 per­
cent C02 (by volume) with the  remainder, N 2 .  They were chosen i n  view of the  
three  Mars atmosphere models given by reference 6 .  

It i s  emphasized t h a t  t he  r e s u l t s  given by t h i s  study a r e  t o  be considered 
preliminary est imates  only. They may be assumed as q u a l i t a t i v e l y  cor rec t ,  but  
are subject  t o  subs t an t i a l  quant i ta t ive  adjustment as addi t iona l  experimental 
results become ava i l ab le .  

SYMBOLS 

frequency f a c t o r ,  defined by equation (8),m3/mole-sec 

molecular bond or dissoc ia t ion  energy, J 

endothermic ac t iva t ion  energy, J 

p a r t i t i o n  funct ion per un i t  volume 

p a r t i t i o n  functions f o r  t r ans l a t ion ,  ro t a t ion ,  and v ibra t ion ,  
respec t ive ly  

endothermic heat  of reac t ion ,  J 

~ ~­

lAmbient temperature a f f e c t s  only the  temperature r a t i o  across  a strong 
shock wave but  has negl ig ib le  e f f e c t s  on the  absolute  values of any quant i ty  
behind the  wave f r o n t .  
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h Planck's constant,  6.6256nO-34J see 

KC 
equilibrium constant based on molar concentrations 

k Boltzmann constant,  1.3805fio-2~J / O K  

kf Ykb reac t ion  r a t e  coe f f i c i en t  i n  the  forward (endothermic) and reverse 
d i r ec t ions  , respec t ive ly  

2 t o t a l  number of s ign i f i can t  r o t a t i o n a l  degrees of freedom 

M an a r b i t r a r y  chemical species  ac t ing  as a c o l l i s i o n  par tner  

m molecular mass, %/pa r t i c l e  

h 
m molecular we ight  ,kg/kg-mole 

-

m G2/&, a l s o  equal t o  t h e  r a t i o :  moles of ambient gas mixture per 


mole of l o c a l  gas mixture 

HA Avogadro ' s number, 6 .022x1023particles/mole 

Nj 
mole f r ac t ion ,  moles of species j per mole of l o c a l  mixture 

n number of atoms per molecule 

volumetric r a t e  of production of species j by reac t ion  i,Qij moles/sec G 
-

Qij species production r a t e  parameter, Qijrz) 

sa c o l l i s i o n  cross  sec t ion  (see eq.  ( 4 ) )  

S t o t a l  number of v ib ra t iona l  degrees of freedom 

T temperature, OK 

T1 ambient temperature , 200' K 
-
T 


t p a r t i c l e  time, sec 


tL labora tory  time , see 


v volume 


VS shock speed, m/sec 


V l o c a l  speed behind the  shock wave (shock wave reference frame) 
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- V-V 
VS 

Y dis tance  behind the  


YO reference d is tance ,  

-

Y dis tance  parameter, 


shock f r o n t ,  m 

1m 

p 1  y-
Po yo 

a an index representing a v ib ra t iona l  energy mode 

constants i n  equation (3) 

l o c a l  concentration of species j ,  moles of j per mole of ambient 
gas 

c h a r a c t e r i s t i c  temperature f o r  ro t a t ion ,  OK 

c h a r a c t e r i s t i c  temperature of t h e  a v ib ra t iona l  mode, 0K 
i%AfiB

reduced molecular weight, ~ 

GAGB 

mass densi ty ,  Q / m ”  

reference densi ty ,  1.22’3kg/m” (standard ea r th  sea l e v e l )  

-02 

symmetry number i n  equation (2)  


concentration of species A i n  moles per un i t  volume 


Subscri pt s 

evaluated f o r  the p a r t i c l e  A, By  o r  AB 

equi1i b r  ium value 

f 	 frozen chemistry value 

reac t ion  i 

species j 

peak concentration 

r reac tan t  r 
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o reference value 

1 conditions of the  gas mixture ahead of t he  shock wave 

2 conditions of t he  gas mixture behind the shock wave 

METHOD O F  ANALYSIS 

General Considerations and Assumptions 

This ana lys i s  i s  based on the following assumptions: A normal shock wave 
propagates a t  constant ve loc i ty  in to  a quiescent mixture of C02 and N2 of uni­
form dens i ty  and temperature. After passage of the shock f ront  t he  molecular 
i n t e rna l  energy modes of ro t a t ion ,  v ibra t ion ,  and e lec t ron  exc i ta t ion  reach 
equilibrium w i t h  t h e  t r a n s l a t i o n a l  energy p r i o r  t o  the  onset of any chemical 
change. The mixture of chemical species mixture j u s t  behind the  shock, which 
i s  the  same as t h a t  ahead, then starts from i t s  so-called "frozen chemistry" 
condition and proceeds through a system of homogenous bimolecular reac t ions  t o  
an equilibrium s t a t e .  A l l  t he  molecular energy modes follow i n  equilibrium 
with the l o c a l  t r a n s l a t i o n a l  temperature. It i s  well known t h a t  some of these  
assumptions, although c l a s s i c a l ,  a r e  not always v a l i d ,  p a r t i c u l a r l y  that  of 
l o c a l l y  equi l ibra ted  v ib ra t iona l  energies .  I n  view of the qua l i t a t ive  nature  
of t h i s  study, however, the  addi t ion of any further refinements i s  un jus t i f i ed .  

Chemical species.- The complexity of  t he  chemical system t o  be analyzed 
depends pr imari ly  on t h e  number of species considered. The species important 
t o  the  chemical k i n e t i c s  a r e  assumed i n  t h i s  case t o  be those s ign i f i can t  i n  
determining the  equilibrium thermodynamic s t a t e  of t he  gas .  From reference 7, 
these a r e  shown for shock speeds of 4 t o  8 km/sec t o  be: C 0 2 ,  N2, CO, NO, CN, 
02, C ,  0, and N .  Assuming only these species  s impl i f ies  t h i s  study s ince ,  a t  
the  high temperatures associated with "frozen chemistry" immediately behind t h e  
shock, t he  gas tends toward complete ion iza t ion .  The consequences of t h i s  
assumption should not be ser ious,  however, s ince a t  the  shock speeds of i n t e r ­
e s t ,  the  ionizat ion r a t e s  a re  comparable t o  the  chemical r a t e s  i n  an environ­
ment moving toward negl ig ib le  ionizat ion (e .g . ,  r e f .  8 ) .  Furthermore, the  
estimates of reference 5 which included ion iza t ion  react ions and shock speeds 
up t o  12 km/sec ind ica te  t h a t  even f o r  much higher speeds than 8 km/sec, the  
nonequilibrium concentration of ionized species i s  not predominant compared t o  
t h e  concentration of neu t r a l  species .  Thus, the  consideration of ionized 
species  i s  not expected t o  s ign i f i can t ly  a f f e c t  t he  conclusions of t h i s  study. 
References 9, 10, and 11provide the  r e l a t i v e  abundances of ionized and 
uncharged p a r t i c l e s  f o r  t he  frozen and equilibrium thermodynamic s t a t e s  of 
present i n t e r e s t .  

Consistent w i t h  t he  assumption of a l o c a l l y  equi l ibra ted  d i s t r i b u t i o n  of 
i n t e rna l  energies ,  s p e c i f i c  consideration of t he  species  i n  i n t e r n a l l y  exc i ted  
s t a t e s  i s  a l s o  omitted. Excited species have been shown t o  r eac t  a t  higher 
r a t e s  than t h e i r  ground-state counterparts but  t he  e f f e c t s  of such considera­
t i o n s  can be assumed absorbed i n t o  the  given mean reac t ion  rates which account 
f o r  reac tan ts  i n  a l l  energy s t a t e s .  This i s  the  case when r a t e  coe f f i c i en t s  



a r e  determined from experiment since most analyses of such experiments assume 
an equilibrium d i s t r i b u t i o n  of energy s t a t e s  except when spec i f ic  exc i ta t ion  
react ion rates a r e  given. 

Reactions.- The preliminary s e t  of reac t ions  used f o r  t h i s  study is  given 
by t ab le  I. Each reac t ion  is  wr i t ten  with t h e  endothermic d i rec t ion  from l e f t  
t o  r i g h t .  The reac t ions  a r e  divided in to  th ree  general  groups, according t o  
the  manner i n  which they  were studied. The d issoc ia t ion  react ions (No.  1-6) 
a r e  considered fundamental t o  the  react ion system and were included i n  a l l  
calculat ions of t he  chemical k ine t i c s .  In t h i s  s tudy they a r e  assumed t o  
occur upon c o l l i s i o n  o f  the  d issoc ia t ing  species with any a r b i t r a r y  p a r t i c l e ,  
M. This assumption i s  a convenient means of simplifying the react ion system 
although using an a r b i t r a r y  co l l i s ion  par tner  r a the r  than a spec i f i c  one can 
i n  some cases lead  t o  a f ac to r  of 20 e r ro r  i n  reac t ion  r a t e .  Because there  
a r e  many other  uncer ta in t ies  which must be incorporated t h a t  preclude the pen­
a l t i e s  of t h i s  one, t he  benef i t s  of a s implif ied system make the  assumption 
a t t r a c t i v e .  The air  exchange react ions (No. 7-9) a r e  those fami l ia r  t o  most 
nonequilibrium a i r  s tud ie s .  Their r a t e s  have been measured many times and they 
are considered t o  contr ibute  comparatively l i t t l e  uncertainty t o  the  r e s u l t s  
of t h i s  ana lys i s .  The remaining react ions (No. 10-17)a r e  those r e su l t i ng  
from the  presence of carbon atoms and molecules containing them. The eight  
carbon react ions given represent l e s s  than ha l f  t h e  combinations possible  from 
the  species considered. The others  f a l l  in to  severa l  groups, a l l  of which 
have been omitted. For example, s i x  more reac t ions  may be wr i t ten  which con­
t a i n  the  s a m e  reac tan ts  as given i n  t a b l e  I but  r e s u l t  i n  d i f f e ren t  products. 
A t yp ica l  example i s  shown with react ion 14, given below with i t s  endothermic 
heat  of reac t  ion.  

CO + NO Z C02 + N 102 kJ/mole 

The heat of reac t ion  provides an indicat ion of the  energy required t o  ac t iva t e  
t h e  reac t ion .  These same reac tan ts  could a l so  y ie ld  

CO + NO $ CN + O2 424 kJ/mole 

What appear t o  be simpler and more l i k e l y  products i n  t h i s  react ion require  a 
much higher energy t o  OCCUT. The corresponding increase i n  ac t iva t ion  energy 
a f f e c t s  t he  associated reac t ion  r a t e  i n  an exponential manner making the  reac­
t i o n  far l e s s  e f f ec t ive  than i t s  lower energy counterpar t .  Hence, t he  higher 
energy versions of a given s e t  of reac tan ts  a r e  omitted. Another group of 
possible  react ions not included i n  t ab le  I a r e  those r e su l t i ng  i n  three  prod­
uc ts .  The same reac tan ts  used above could a l so  y ie ld  the  following: 

CO + NO f CN + 20 917 kJ/mole 

It i s  e a s i l y  seen that  the  same arguments applied above may again be used i n  
t h i s  case. Additional energy i s  required t o  produce the  t h i r d  product thereby 
allowing three-product exchange react ions t o  be ignored as possible control l ing 
react ions.  

A t h i r d  group of react ions which bear discussion a r e  those containing spe­
c i e s  of primary i n t e r e s t  but  a l s o  requiring a species which i s  not s ign i f icant  



i n  determining the  post-shock equilibrium s t a t e  of the  gas .  A n  example is  
given by 

2 C N  2 N 2  + C 2  29 kJ/mole 

Even though t h i s  reac t ion  requi res  r e l a t i v e l y  l i t t l e  energy, it necess i ta tes  
admitt ing t o  the  presence of C 2 .  Since C2 always appears i n  extremely small 
quan t i t i e s  under the  circumstances of i n t e r e s t  here ,  t he  CN l o s t  or generated 
by  t h i s  mechanism i s  t r i v i a l  compared t o  other  higher energy react ions using 
more predominate species .  Thus, reac t ions  involving such species as C2, N 2 0 ,  
and NO2, t o  name a few, may be neglected and t h e i r  k i n e t i c s  s tudied using the  
thermodynamic p r o f i l e s  computed i n  t h e i r  absence. In view of t he  preceding 
arguments, t a b l e  I i s  believed t o  contain a l l  t he  reac t ions  of primary impor­
tance t o  the  chemical system f o r  t he  shock-wave conditions of t h i s  study. It 
a l s o  contains a few which may be superfluous because of the  nature  of the 
system. These a r e  i d e n t i f i e d  i n  t h e  "Results and Discussionn sect ion by com­
paring the  r e l a t i v e  e f fec t iveness  of a l l  the  react ions i n  producing a given 
species .  

React ion Rates 

Before proceeding t o  an appl ica t ion  of the postulated chemical system, it 
i s  f i r s t  necessary t o  def ine the  r a t e  coe f f i c i en t s  associated with each reac­
t i o n .  A review of recent  l i t e r a t u r e  ( e . g . ,  r e f .  2) has shown t h a t  for a i r  
reac t ions  of i n t e r e s t ,  a given r a t e  i s  seldom known within a f ac to r  of 5 a t  
high temperatures. Fortunately,  there  a r e  some exceptions such as N2 and 02 
dissoc ia t ion  r a t e s  which have been claimed accurate within a f ac to r  of 2 when 
c o l l i s i o n  par tners  a r e  spec i f ied .  However, i n  the  cases where l imi ted  or no 
measured da ta  a r e  ava i lab le ,  it can be considered exceptional t o  pred ic t  the  
correct  r a t e s  within an order of magnitude. This "plus or minus one order-of­
magnitude" c r i t e r i a  w i l l  be used t o  evaluate the  t h e o r e t i c a l  predict ions made 
i n  t h i s  study. The reac t ions  given i n  t a b l e  I may be separated f o r  t h i s  
purpose in to  two types, d i s soc ia t ion  and exchange. Because of t h i s  separa­
b i l i t y ,  it i s  advantageous t o  use the r a t e  theory found most successful fo r  
each type.  

Dissociation reac t ions . - Because the  d issoc ia t ion  reac t ions  a r e  assumed 
in  t h i s  study t o  occur only with a general  co l l i s ion  par tner ,  it i s  necessary 
t o  use a r a t e  theory t h a t  w i l l  a i d  i n  unifying the  many published r a t e s  which 
spec i fy  c o l l i s i o n  par tners .  Also,  a method is  required t o  pred ic t  the  r a t e  of 
CN d i ssoc ia t ion ,  the  only d i s soc ia t ion  reac t ion  where no da ta  were found. A 
recent and successful  theory formulated by Hansen ( r e f .  12) from a version of 
the  ava i lab le  energy theory i s  used f o r  these purposes. Hansen's r e s u l t s  may 
be applied t o  the  general  d i ssoc ia t ion  reac t ion  

kb 
A B + M S  A i - B + M  

kf 
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The r a t e  of production of molecule A, f o r  example, by the  above mechanism i s  
defined as 

d t  
= -

(5 
[M] {[AB] -1[A][B])

2kf Kc 

where it i s  assumed t h a t  K, = kf/kb 

1, A - BI_(2 , A f B  
and kf = kf (T)  

The forward r a t e  coe f f i c i en t ,  k f ,  can be equated t o  t h a t  given by Hansen. 
Rather than use Hansen’s r e s u l t s  d i r e c t l y ,  however, two s l i g h t  modifications 
were made t o  h i s  expression f o r  kf which allows it t o  be compared with the  
convenient Arrhenius form 

kf = PTV exp(-Ea/kT) ( 3 )  

This is  accomplished by neglect ing the  change i n  momentum cross  sec t ion  w-ith 
increasing p a r t i c l e  momentum and assuming D/kT >> 1/2.  A d i f fe rence  of l e s s  
than 5 percent i s  introduced i n  the  f i n a l  r e s u l t s  a t  t h e  temperatures of 
i n t e r e s t  here .  The modified Hansen equation f o r  c o l l i s i o n  induced d issoc ia t ion  
of a diatomic molecule, AB where AB ,d M y  i s  then given by 

where e i s  the  Napierian base.  I n  equation (4),Sm i s  equivalent t o  the  
Sutherland cross  sec t ion  used f o r  v i s c o s i t y  (values given f o r  severa l  species 
i n  r e f .  12)  and D i s  the  bond d issoc ia t ion  energy of molecule AB. Rewriting 
equation (4) using the  mean values,  S, = 30XL0-20& and = 14, appropriate  fo r  
diatomic molecules containing C ,  N ,  and/or 0,we have 

m3kf = 2X106 
mole-see ( 5 )  

(It should be noted t h a t  t he  values of kf given i n  t h i s  paper a r e  10-6 times 
those given i n  the  more customary u n i t s  of cm3/mole-sec.) Equation ( 5 )  i s  
compared with severa l  published r a t e  equations f o r  02, N2, NO, and CO dissocia­
t i o n  i n  f igu re  1. The published r a t e s  a re  p lo t t ed  without giving consideration 
t o  t h e i r  appl icable  temperature ranges although the  composite experimental 
temperature l i m i t s  of t he  individual  experiments a r e  indicated.  Equation ( 5 )  i s  
shown t o  provide r a t e s  which represent an approximate mean of t he  other  values 
plot ted;  it therefore  seems appropriate t o  use equation ( 5 )  f o r  predict ing the  
unknown CN d i ssoc ia t ion  r a t e s .  The d i f f i c u l t y  i n  choosing among r a t e  coef f i ­
c i en t s  where c o l l i s i o n  par tners  a r e  spec i f ied  i s  a l s o  avoided by using equa­
t i o n  ( 3 )  t o  def ine kf f o r  a l l  the d issoc ia t ion  reac t ions  i n  t a b l e  I except 
reac t ion  1 (CO2 d i s s o c i a t i o n ) .  

a 




Hansen (ref.  12)  a l s o  der ives  a d issoc ia t ion  r a t e  theory f o r  polyatomic 
molecules such as CO,. When the  r e s u l t s  a r e  compared with experimental da ta ,  
however, they  a r e  not found t o  be so successful  as f o r  t he  diatomic case.  
Furthermore, severa l  recent  measurements of C02 d i s soc ia t ion  r a t e s  given i n  
references 14 t o  1-7a r e  shown by f igu re  2 t o  be i n  good agreement. Figure 2 
a l s o  includes Hansenls unadjusted predic t ion  which i s  shown t o  be high.  The 
experimental r e s u l t s  of Davies ( r e f s .  16 and 17)were se lec ted  and have been 
used here as the  C02 d i s soc ia t ion  r a t e  fo r  reac t ion  1. 

Exchange react ions.- Of t he  eleven exchange reac t ions  l i s t e d  i n  t a b l e  I 
only reac t ions  7 t o  9 have r a t e  coe f f i c i en t s  based on experiment. Their 
values,  taken from references 2 and 3, a r e  given i n  t a b l e  I. The remaining 
r a t e s  f o r  t h e  carbon reac t ions  must be estimated. A review of the  l i t e r a t u r e  
resu l ted  i n  f inding severa l  methods f o r  making such est imates  but  none showed 
subs t an t i a l  improvement over t he  c l a s s i c a l  quantum mechanical approximation 
described i n  reference 18. The method, commonly termed "Absolute Reaction Rate 
Theory" or "Transit ion-State Theory," i s  a l s o  discussed with g rea t e r  d e t a i l  i n  
t he  more recent references 19 and 20. The t r ans i t i on - s t a t e  theory has an 
advantage over some other  methods such as "co l l i s ion  theory" (see r e f .  19) i n  
t h a t  it contains g rea t e r  molecular d e t a i l .  In  view of t h e  s t r u c t u r a l  s i m i l a r ­
i t y  of the  carbon, ni t rogen and oxygen atoms which make up t h i s  k ine t i c  system, 
the  t r ans i t i on - s t a t e  theory a l s o  lends i t s e l f  t o  a convenient genera l iza t ion  
based on a system f o r  c lass i fy ing  the reac t ions ,  as w i l l  now be shown. The 
theory may be applied i n  one form t o  bimolecular reac t ions  such as tha t  given 
i n  general  terms by 

where A, By C ,  and D may be atoms o r  molecules. The a s t e r i s k  r e f e r s  t o  the 
unstable "act ivated complex" which serves as a t r a n s i t i o n  molecule during the  
reac t ion .  The forward reac t ion- ra te  coe f f i c i en t ,  k f ,  i s  s i m i l a r  i n  d e f i n i t i o n  
t o  t h a t  used i n  equation (2)  and i s  expressed by the  t r ans i t i on - s t a t e  theory 
as 

In equation (7),Fr i s  the  p a r t i t i o n  function per un i t  volume of each reactant ,  
r, and F, i s  the  same as Fr but  f o r  the ac t iva ted  complex l e s s  t he  contribu­
t i o n  of one v ib ra t iona l  mode. The omitted v ibra t ion  i s  the  mechanism by which 
the  complex i s  assumed t o  separate  i n t o  reac t ion  products.  The t r ans i t i on -
state theory does not provide a means of estimating the  ac t iva t ion  energy, E a .  
Such estimates w i l l  be discussed subsequently; here w e  a r e  deal ing only w i t h  
t h e  pre-exponential or "frequency fac tor"  defined as 
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me p a r t i t i o n  functions,  Fr and F*, are evaluated assuming equ ipa r t i t i on  of 
energies and contr ibut ions of molecular t r a n s l a t i o n ,  ro t a t ion ,  and v ibra t ion  
only. Thus 

f t f r f vF =  
V (9) 

where 

A t  t h i s  point ,  one could subs t i t u t e  values of the  individual  molecular 
proper t ies  and evaluate  f o r  each reac t ion  i n  d e t a i l .  However, t h i s  i s  not 
p r a c t i c a l  s ince these proper t ies ,  which are wel l  known f o r  most reac tan ts ,  a r e  
d i f f i c u l t  t o  determine f o r  an ac t iva ted  complex. Furthermore, equation (7) i s  
derived by assuming a physical model of t he  reac t ion  process which i s  highly 
ideal ized and a l s o  requires  Ea t o  be estimated. It therefore  appears equal ly  
r e l i a b l e  t o  express A i n  a general  sense f o r  a given s e t  of s imi la r  reac t ions  
( i . e . ,  with s i m i l a r  r e a c t a n t s ) .  The approach here w i l l  be t o  demonstrate t h e  
s i m i l a r i t y  of t h e  C y  0, and N atoms and through t h i s  s i m i l a r i t y  construct  a 
s e t  of react ion-rate  approximations based on the  molecular configuration of 
p a i r s  of r eac t an t s .  To t h i s  end, t a b l e  I1 l i s t s  values of &, 0r ,  and 8, 
required by equations (10) f o r  t he  species of i n t e r e s t .  It can be seen tha t  
when properly grouped l i k e  quan t i t i e s  show a degree of s i m i l a r i t y .  For 
example, t he  monatomic species a r e  of near ly  the  same atomic weight and, from 
the  per iodic  t a b l e ,  have s i m i l a r  atomic s t ruc tu res .  In  the  case of t he  
diatomic species  an average value of 0, o r  8, can be found which adequately 
approximates the  thermodynamic proper t ies  of any of them. The same i s  t r u e  f o r  
t he  polyatomic molecules when the molecular arrangement i s  considered (i.e .  , 
l i n e a r  or  nonl inear ) .  The ind iv idua l i ty  of each species can therefore  be 
dropped and a t t e n t i o n  given only t o  the  number of atoms i n  each molecule and 
the  manner i n  which they  a r e  arranged. This technique has been proposed i n  
severa l  references (e .g . ,  r e f .  21) but  w i t h  d i f f e r e n t  r e s u l t s  s ince the  con­
s t a n t s  chosen were f o r  more a r b i t r a r y  r eac t an t s .  The r e s u l t s  given here a r e  
special ized f o r  C ,  0, and N systems. 

Generalized r a t e  coef f ic ien ts . - Consider t he  general  bimolecular reac t ion~- . . . .  

given by equation (6 ) .  If equation (9) i s  subs t i t u t ed  i n t o  equation (8) and 
the  contr ibut ion from each reac tan t  i s  denoted by an appropriate  subscr ipt  
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If now AB i s  an atom (ca l l ed  B) and CD a diatomic molecule, t he  reac t ion  i s  

B + CD + (&)+ products
* 

-Since frB- fvB = 1, equation (11)becomes 

Thus, t akes  a spec ia l  form f o r  reac tan ts  of t he  molecular configuration i n  
equation (12).  This scheme of reac t ion  c l a s s i f i c a t i o n  is  now extended t o  other  
reac tan t  configurations using su i t ab le  average values of t he  molecular 
constants.  

The t r a n s l a t i o n a l  energy contr ibut ions a r e  t r e a t e d  f i rs t  s ince a l l  
p a r t i c l e s  contain a t r a n s l a t i o n a l  energy mode. The t r a n s l a t i o n a l  terms, there­
fore ,  m y  be factored from equation (11)f o r  any reac t ion .  
equation ( loa)  equation (11)is  then rewr i t ten  as 

Incorporating 

where the  constant 

-
( C  = 6.68~10~f o r  A i n  m3/mole-sec) and 
an average molecular weight of  14 i s  used f o r  a l l  atomic p a r t i c l e s ,  

i s  a reduced molecular weight. If 
i s  

approximated by 

(14b) 


The ro t a t iona l  pa r t  it ion funct ions a r e  approximated using equation (lob ) with 
average values of 8,. F’romtable I1 the  average values se lec ted  a r e  

Diatomic molecules 8, x 3.3’ K 

Polyatomic molecules er x 0.6’ K 

When the  proper values of 2 a r e  subs t i tu ted  i n t o  equation (lob) 

Atoms 2 = 0  

O.3T Diatomic and l i n e a r  molecules 2 = 2  

2 9’ 2  Nonlinear molecules 2 = 3  



If eva/T i s  assumed small, t he  v ib ra t iona l  contr ibut ions as represented by 
equation (1Oc) can be approximated by 

The values of eva given by t ab le  I1 a r e  replaced by average values se lec ted  
as 

evl = 2 9 0 0 ~K 
ev4 

= 4300' K (930' K f o r  l i n e a r  molecules) 

0v2 = lgOOo K e,, = 4300' K 

Bv3 = 930° K eva = 5000' K f o r  a > 5 

The number of v ib ra t iona l  degrees of freedom, s, must s t i l l  be determined. 

The value assigned t o  a p a r t i c u l a r  molecule depends on the  number of atoms, n, 

i n  t he  molecule. Since an ac t iva ted  complex has one less v ibra t iona l  mode 

than i t s  molecular counterpar t ,  the  following r u l e s  apply: 


3n-5 Linear or  diatomic molecules 

s = 3n-6 Linear complex o r  n o d i n e a r  moleculeI3n-7 Nonlinear complex 

A l l  ac t iva ted  complexes a r e  assumed nonlinear and the  v ibra t iona l  mode corre­
sponding t o  Ovl i s  considered the  mode causing des t ruc t ion  of the complex. 
*om the  preceding, f, i s  then given f o r  t he  configurations needed as 

3.4xlO-4T Diatomic molecule 

5 .  Triatomic complex 

2 .oxlo- = O F  Nonlinear t r ia tomic  molecule 

f v = /  2.1xlo-=P Linear t r ia tomic  molecule 
(17) 

6 . M O - = T ~  Four atom complex 

~ . ~ K L O - ~ ~ T ~Five atom complex 

The combined r e s u l t s  of equations (14) t o  (17)a r e  then as follows: 
Denoting an atom as A, a diatomic molecule as A - B  o r  C - D ,  a l i n e a r  t r ia tomic 
molecule as C - D - E ,  and a nonlinear t r ia tomic  molecule as DCE, we have 
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Reactant p a i r  ii(m3/mole-sec) 1 
A+B .C 2 a 0 4 ~  

A X  -D *E 3 x . 1 - 0 ~ ~  

A+DCE 

A - B t C  - D  1 a 0 - 3 ~ ~  

A-B-~D'E ~ X L O - ~ T ~ ' ~J 
These a r e  the  values of a used f o r  react ions 10 t o  17 i n  t a b l e  I. 

Comparisons with ex2eriment.- Figure 3 provides comparisons of equa­
t i o n  (18) with values of A obtained by experiment or  other  e s t i m t e s .  The 
a p p l i c a b i l i t y  of f igu re  3 r e l i e s  on the  assumption t h a t  t he  Arrhenius form of 
kf (eq.  (3)  ) i s  v a l i d  over any temperature range. It i s  genera l ly  accepted 
t h a t  t h i s  i s  not t he  case but  s ince a l l  of the experimental r e s u l t s  p lo t t ed  i n  
f igu re  3 were obtained by f i t t i n g  equation (3)  t o  the  bas ic  da t a ,  f i gu re  3 
should a t  l e a s t  provide an ind ica t ion  of the  theo re t i ca l  accuracy. The f igures  
a r e  therefore  intended as a comparison of  the predicted magnitudes of w i t h  
experiment i n  the  experimental temperature range ( log T = 3)  and a l s o  as a 
comparison of the func t iona l  dependence of on temperature as given by 
theory w i t h  t h a t  indicated by experiment ( i . e . ,  by comparing the  slopes of t he  
l i n e s  p l o t t e d ) .  The experimental values p lo t t ed  a r e  extrapolated considerably 
beyond the  temperature l i m i t s  of t h e i r  associated experiment. The maximum 
temperature of most experiments represented d id  not exceed 5000° K .  The th ree  
general  reac t ions  shown a r e  those used f o r  t h i s  study. The shaded box on each 
f igure  ind ica tes  the  range of nonequilibrium temperatures covered f o r-
Vs = 8 km/sec and the  assumed inaccuracy of A .  The spec i f i c  comparative r a t e s  
a r e  from the references given i n  parentheses beside the r eac t ion .  Figure 3 
r e l i e s  on the  premise t h a t  a method successful i n  predict ing N ,  0 reac t ions  
works equal ly  well  f o r  C y  N ,  0 reac t ions  because of the  s i m i l a r i t y  of the  
carbon atom t o  the ni t rogen and oxygen atoms. This premise i s  necessary s ince 
only N,  0 reac t ion  r a t e s  were ava i lab le  f o r  comparison. Figures 3(a) and 3(b)  
show excel lent  agreement between theory and experiment considering the  gross  
assumptions made. A probable e r r o r  f ac to r  of plus  or minus an order of mag­
ni tude i s  assigned f o r  f u r t h e r  ana lys i s  of the reac t ion- ra te  unce r t a in t i e s .  
This e r r o r  f ac to r  i s  based on the  experimental rescdts  shown although l a r g e r  
e r r o r s  may e x i s t .  In  f igu re  3 ( c )  t h e  s c a t t e r  i n  experimental values does not 
allow any d e f i n i t e  conclusions regarding the  accuracy of t he  theory.  The 
experimental values f o r  a s ing le  reac t ion  a r e  not i n  good agreement ( v i z . ,  
N2$02 * 2NO). A n  e r r o r  f a c t o r  of p lus  or minus two orders  of rmgnitude is  
therefore  assigned t o  reac t ions  of t h i s  type.  Fortunately,  such reac t ions  
involving two diatomic r eac t an t s  can be shown t o  be minor cont r ibu tors  t o  t h i s  
k i n e t i c  system unless  t h e i r  r a t e s  exceed the  present  es t imates  by four or f i v e  
orders  of magnitude. It i s  seen from f igure  3 (c )  t h a t  t h i s  is  conceivable but  
it i s  believed unl ikely.  



Activation energy.- An es t imat ion of kf using equation (7) s t i l l  
requi res  a value of t h e  ac t iva t ion  energy, Ea. A method of estimating Ea 
using intermolecular p o t e n t i a l  energy surfaces  i s  described i n  reference 18 
but  it requi res  e labora te  computing techniques which are not  warranted con­
s ider ing  t h e  approximate nature  of t h i s  s tudy.  Some semiempirical rules have 
a l so  been proposed by Glasstone, Laidler,  and Eyring ( r e f .  18) and Hirchfelder 
( r e f .  22) but  w e r e  ad jus ted  f o r  reac t ions  involving hydrogen and do not give 
good results f o r  t h e  N, 0 reac t ions .  A n  empir ical  scheme was therefore  con­
s t ruc t ed  which follows t h e  bas i c  ideas of reference 18 but  i s  centered on N, 0 
reac t ions  (assuming again t h a t  C y  N, 0, and N, 0 reac t ions  are s imilar) .  This 
scheme results i n  an empirical  r e l a t i o n  which i s  genera l  f o r  a l l  types of-
bimolecular reac t ions  used here  and i s  wr i t t en  f o r  an endothermic process.  

To f a c i l i t a t e  a discussion of types of r eac t ions ,  t he  following endo­
thermic reac t ion  types a r e  ident i f ied :  

I ABM + AtBtM d i s soc ia t ion  

I1 ABX + A+BC three center  exchange 

I11 A B X D  + ACtBD four  center  exchange 

where each symbol i s  an atom or p a i r  of atoms not separated by the  reac t ion .  
The following pos tu la tes  are proposed: 

(1)For Type I reac t ions ,  Ea = HR = DAB. The v a l i d i t y  of t h i s  has been 
demonstrated experimentally with a f e w  exceptions such as C02 d i s soc ia t ion .  
It i s  a l s o  r e f l ec t ed  i n  equation (4)  f o r  d i s soc ia t ion  react ion-rate  
coe f f i c i en t s .  

(2)  For any r eac t ion  occurring d i r e c t l y  from ground-state r eac t an t s  , 
E, 2 HR. Measurement v e r i f i e s  t h i s  f o r  a l l  of t he  exchange reac t ions  examined, 
and it i s  a requirement from an energy conservation viewpoint. 

( 3 )  Ea  i s  a funct ion of t h e  sum of the  bond d i s soc ia t ion  energies  f o r  
those bonds which a r e  broken i n  the  r eac t ion .  This presumption i s  a r e s u l t  of 
t h e  methods suggested i n  references 18 and 22. It may be given a pseudo-
physical  b a s i s  by r e l a t i n g  it t o  the  energy required t o  des t roy  t h e  ac t iva t ed  
complex and neglect ing i t s  heat  of  formation. 

Regardless of the  l ack  of r i g o r  i n  the  preceding pos tu la tes ,  t hey  appear 
t o  represent  t h e  behavior of experimental observations and are therefore  
pursued. Normalizing with respect  t o  HR, t h e  t h i r d  pos tu la te  gives  

The boundary conditions become E a / H ~  = 1when (cDr ) /HR = 1and E a / H ~  > 1 
always. Equation (19) suggests a co r re l a t ion  of experimental results Zs given 
by f igu re  4.  The da ta  are taken from reference 2 and pe r t a in  t o  N ,  0 reac t ions  
except where noted otherwise on the f igu re .  A l i n e a r  co r re l a t ion  i s  obtained 



on semilog axes i f  t he  l i k e l y  degree of e r r o r  i n  the  experimental da t a  i s  kept 
i n  mind and temperature dependencies are ignored. From f igu re  4, t he  following 
empirical  r e l a t i o n  i s  then proposed: 

The e r r o r  assigned t o  t h e  r e s u l t s  of f i gu re  4 requires  a multiplying f a c t o r  f o r  
t he  right-hand s ide  of equation (20) of exp k 3/10. For values of 
HR/k < 50,000° K, t h i s  e r r o r  a f f e c t s  k, by l e s s  than an order of magnitude 
(ER/k i s - l e s s  than 50,000° K f o r  most cf  t he  carbon exchange reac t ions  and a l l  
those of importance). Equation (20) w a s  used t o  complete the  estimates of kf 
f o r  react ions 10 t o  17 of t a b l e  I. 

Computing Method 

The nonequilibrium proper t ies  behind a normal shock wave were computed 
using a modified vers ion of t he  PBM 704 program described by references 23 and 
24. The system of equations w i l l  not be discussed i n  d e t a i l  here because of 
t he  completeness i n  descr ip t ion  supplied by reference 24. However, i n  b r i e f ,  
t he  program r e l i e s  on conventional gasdynamic and chemical conservation equa­
t i o n s  i n  conjunction with a quantum-mechanical descr ip t ion  of t he  individual  
species thermodynamics. Thus, spectroscopic da ta  such as t h a t  given i n  
t ab le  I1 a r e  used as input .  Some addi t iona l  input da ta  a l s o  required were the  
hea ts  of formation of the  individual  species and were obtained from re fe r ­
ence 25.  The computer program given by reference 24 w a s  recoded f o r  use on an 
I B M  7094 and modified t o  accept polyatomic molecules with up t o  nine vibra­
t i o n a l  degrees of freedom. Equilibrium e lec t ron  exc i t a t ion  has a l s o  been 
included as i n  t h e  o r i g i n a l  program. Electronic  energy l e v e l s  up t o  
80,000 cm-1 (1.6ao-= J )  were incorporated although such refinement has only 
s m a l l  e f f e c t s  on the  numerical r e s u l t s  of t h i s  study. 

Computing time w a s  found t o  have a much stronger dependence on the  number 
of species than on the  number of reac t ions .  Minor species re ta ined  i n  t h e  
ca lcu la t ions  slow the computing progress appreciably and, i n  some cases,  t h e i r  
computed concentrations su f fe r  from excessive numerical e r r o r s .  Typical com­
puting times f o r  a re laxa t ion  t o  within 10 percent of equilibrium a t  
Vs = 8 km/sec were about 5 minutes. 

RESULTS AND DISCUSSION 

With a l l  the  necessary reac t ions  and r a t e  coe f f i c i en t s  es tab l i shed ,  t h i s  
sec t ion  i s  devoted t o  an ana lys i s  of t he  chemical k i n e t i c s  f o r  shock condi­
t i o n s  described previously.  A discussion i s  f irst  given of some r e s u l t s  using 
t h e  nominal reac t ion  r a t e s  i n  t a b l e  I .  General cha rac t e r i s t i c s  of the  chemical 
k i n e t i c s  a r e  i l l u s t r a t e d  and severa l  f ea tu re s  which a r e  independent of the  
react ion-rate  e r r o r s  a r e  discussed. This i s  followed by an evaluat ion of the  
changes i n  thermochemical p r o f i l e s  due t o  uncer ta in t ies  i n  the  reac t ion  r a t e s .  
The consequences of de l e t ing  c e r t a i n  species and reac t ions  f r o m t h e  chemical 
system a r e  a l s o  invest igated i n  an e f f o r t  t o  simplify t h e  k i n e t i c  model. 



Fina l ly  a b r i e f  study i s  made of t h e  CN k i n e t i c s  over a range of shock speeds 
because of t he  p a r t i c u l a r  i n t e r e s t  i n  t h a t  species  f o r  s tud ie s  of shock-layer 
r ad ia t ion .  

General Charac te r i s t ics  

Some est imates  of t he  nonequilibrium chemical behavior f o r  a shock speed 
of 8 km/sec using nominal reac t ion  rates a r e  presented in f igu res  5 t o  7. 
Thermodynamic p r o f i l e s  and species concentrations a r e  p lo t t ed  as functions of 
t he  d is tance  parameter y, which i s  equivalent t o  a b inary  scal ing parameter 
as described by reference 26. The parameter 7 may be converted t o  laboratory 
t i m e  by the  approximation 

-

which i s  cor rec t  within 10 percent f o r  a l l  shock conditions considered. 
Par t  (a) of each f igu re  i l l u s t r a t e s  p r o f i l e s  of t he  thermodynamic quan t i t i e s  
most s ens i t i ve  t o  the  chemical k i n e t i c s .  Other thermodynamic var iab les  which 
a r e  not shown, such as l o c a l  pressure o r  enthalpy, vary only a few percent 
behind t h e  shock wave. Local ve loc i ty  i s  a l s o  omitted s ince,for  a normal shock 
wave, it i s  e a s i l y  obtained from 

- I  
v = =  
P 

Par t  (b )  of each f igu re  i l l u s t r a t e s  t h e  individual  species concentrations 
given as mole f r a c t i o n s  of the  ambient gas mixture. These may be converted t o  
the  more f a m i l i a r  mole f r ac t ions  based on l o c a l  gas composition by 

N .
J 

= m y  
j 

The equilibrium thermodynamic and species concentration values given i n  f ig ­
ures 5 t o  7 were obtained using a computer program developed by Simcox and 
Peterson ( r e f .  9 ) .  The equilibrium species concentration l e v e l s  indicated 
separately on t h e  f igu res  a r e  f o r  pJpo = only s ince the  nonequilibrium 
curves f o r  pl/po = 10-1 achieve equilibrium l e v e l s  within the  sca le  of the  
f igu res .  In  some cases,  s l i g h t  d i f fe rences  between the  fundamental inputs  
used i n  reference 9 and i n  t h i s  study preclude a close comparison of equi l ib­
r i u m  species concentrations with the  nonequilibrium p r o f i l e s .  However, the 
discrepancy never exceeds 5 percent .  Tabulated equilibrium concentration 
values a r e  given i n  t a b l e  I11 t o  provide those numerically too low t o  appear 
on the  f igu res .  

Figures 5 t o  7 demonstrate severa l  f ea tu re s  of the chemical k i n e t i c s  
which a r e  re ta ined  regardless  of t he  reac t ion  r a t e s  used. For example, the  
p r o f i l e s ,  when p lo t t ed  i n  terms of 7, show no dependence on ambient dens i ty  
u n t i l  equilibrium i s  near ly  achieved. This occurs because the  d issoc ia t ion  
react ions proceed predominantly i n  the  forward d i r ec t ion  (except near equi l ib­
rium) while the  exchange reac t ions  a r e  b inary  i n  e i t h e r  d i r ec t ion .  Among o ther  
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things,  t h i s  cor re la t ion  a,llows easy estimation of the  time o r  d i s tance  t o  
equilibrium f o r  intermediate ambient d e n s i t i e s .  That is ,  i f  the equilibrium 
values of any quant i ty  sens i t i ve  t o  t h e  k ine t i c s  a r e  known, the  manner i n  which 
i t s  values depart  from the  lowest dens i ty  curve t o  approach equilibrium i s  not 
d i f f i c u l t  t o  es t imate .  (Equilibrium thermodynamic proper t ies  and species con­
centrat ions f o r  i n i t i a l  gas mixtures c lose t o  those used here are given by 
r e f .  11.) A second f ea tu re  demonstrated i n  f igures  5 t o  7 per ta ins  t o  the  
manner i n  which those species  quickly generated (e .g . ,  NO and CN)  tend t o  
overshoot t h e i r  equilibrium concentrations.  A "peak" concentration f o r  each 
generated species may be defined whether it is a c t u a l l y  achieved o r  no t .  It 
depends only on the  shock speed and ambient gas composition, assuming reac t ion  
r a t e s  a r e  known. This density-independent peak i s  achieved i f  the  equilibrium 
concentration i s  l e s s  than the  peak value.  In  the  event t h a t  t he  equilibrium 
concentration i s  g rea t e r ,  t h e  concentration w i l l  rise monotonically. A n  
example of both cases can be found i n  f igu re  6(b)  by comparing the  CN concen­
t r a t i o n s  f o r  pl/po = 10-6 and 10-l. Notice i n  the  case where pl/po = 10-6, 
t he  CN concentration reaches a peak and then decreases t o  i t s  equilibrium 
value.  This same behavior would occur f o r  a l l  lower dens i t i e s  and any higher 
dens i ty  where the  equilibrium CN concentration w a s  l e s s  than the  "peak." For 
those ambient dens i t i e s  where the equilibrium CN concentration w a s  higher than 
the  "peak," t he  CN concentration p r o f i l e  would r i s e  monotonically as it does 
f o r  pl/ps, = 10-1 shown i n  f igu re  6 ( b ) .  By v i r tue  of t h i s  same behavior, 
ce r t a in  minor species which a r e  strong rad ian t  emi t te rs  (e .g . ,  C,) were a l s o  
found t o  achieve concentrations considerably higher than t h e i r  equilibrium 
value within the  nonequilibrium region.  

A comparison of the  (a)  p a r t s  of f igures  5 t o  7 t o  obtain the  e f f e c t s  of 
ambient gas mixtures showed only minor d i f fe rences  f o r  the  mixtures considered. 
The d i f fe rences  in  thermodynamic p r o f i l e s  a r i s e  p r inc ipa l ly  because of s m a l l  
changes i n  t h e i r  end points  ( i . e . ,  the  i n i t i a l  or  frozen and equilibrium 
va lues ) .  The time o r  d i s tance  required t o  reach near-equilibrium i s  essen­
t i a l l y  unal tered.  Conversely, comparing pa r t  (b )  of each f igure  shows ambient 
gas composition t o  have s izable  e f f e c t s  on the  species concentration but, again,  
the  major d i f fe rences  a r e  i n  the  r e l a t i v e  i n i t i a l  and equilibrium values r a the r  
than time or  d i s t ance .  However, the  example i s  c i t e d  where decreasing the  
ambient gas composition from 50 t o  5 percent C02 causes approximately a four­
fo ld  increase i n  7 at  the  CN peak. On the  other  hand, 7 a t  the  NO peak i s  
unaffected.  

To gain ins ight  i n t o  t h e  r e l a t i v e  importance of each reac t ion  t o  t h e  whole 
chemical system it i s  worthwhile t o  compare the  r a t e  of production of ce r t a in  
species by individual  reac t ions .  Figure 8 makes these comparisons a t  one s e t  

-of shock-wave conditions f o r  a l l  except t he  monatomic spec ies .  The dependent 
parameter, Qij, i n  f igure  8 i s  proport ional  t o  the  species production r a t e  
defined by equation (2); t h a t  is ,  Q i j  i n  f igure  8(a) represents  t h e  net pro­
duction (or  reduction) of CO by each reac t ion  shown and accounts f o r  both the  
forward and reverse  contr ibut ion of t h a t  reac t ion .  Some reac t ions  (viz . ,8  and 
13,  t ab l e  I) show a negl ig ib le  contr ibut ion t o  any t o t a l  species  production. 
Reaction 1 3  would not become s ign i f i can t  unless kf f o r  t h a t  reac t ion  was 
several  orders of magnitude g rea t e r  than those values regarded as reasonable 
( i . e . ,  using the  limits defined by f i g .  3 ( c ) ) .  Reaction 8 has a r e l a t i v e l y  
well-established rate which keeps it inef fec t ive  f o r  any species production, 



thus making it c l e a r l y  unimportant (e .g . ,  f i g s .  8 ( b )  and 8 ( f ) ) .  Some other  
react ions appearing i n  f igu re  8 a l s o  show the  p o s s i b i l i t y  of being de le ted .  
For example, reac t ion  16 ( f i g s .  8 ( a )  and 8 ( e ) )  i s  minor compared t o  other  
reac t ions  contr ibut ing t o  t h e  same spec ies .  Also, it i s  a reac t ion  most 
probably already contained i n  the  measured C02 d i s soc ia t ion  r a t e  ( reac t ion  1) 
since it incorporates only products of C02.  Its e f f e c t  on the  k ine t i c s  has 
been numerically t e s t e d  and found t o  be negl ig ib le .  Reactions 13 and 17 
( f i g s .  8(a) and 8 ( f ) )  a l s o  incorporate only C02 and i ts  products. However, 
they  serve as p r inc ipa l  O2 generators  and cannot be de le ted  when considering 
t h a t  species .  

Figure 8 i s  representa t ive  of s i m i l a r  p l o t s  f o r  other  ambient d e n s i t i e s  
and gas mixtures. The r e s u l t s  of f i gu re  8 a r e  a l t e r e d  by higher ambient-
dens i t i e s  i n  a manner compatible with t h a t  of f i gu res  5 t o  7; t h a t  is ,  Qi j  
f o r  a higher dens i ty  depar t s  from t h e  low dens i ty  curves towards zero when 
equilibrium is approached.- A change i n  gas mixture w i l l  cause some s l i g h t  
r e l a t i v e  s h i f t i n g  of t he  Q i j  curves but  does not a l t e r  the conclusions 
obtained regarding the  importance of individual  reac t ions .  Hence, reac t ions  8, 
13,  and 16 may be de le ted  for a l l  ambient dens i t i e s ,  gas mixtures, and, i n  
addi t ion,  other  shock speeds. 

Additional thermodynamic and species concentration p r o f i l e s  f o r  Vs = 6 
and 4 km/sec a r e  presented i n  f igures  9 and 10, respec t ive ly .  These f igures  
i l l u s t r a t e  the  diminishing d i f fe rences  between the  frozen and equilibrium 
values of any quant i ty  with decreasing shock ve loc i ty  and show a lessening 
tendency of the  generated species t o  reach high peak concentrations.  The 
extent  t o  which the nonequilibrium region i s  lengthened with decreasing shock 
ve loc i ty  i s  a l s o  demonstrated. The e f f e c t s  of other  ambient dens i t i e s  and gas 
compositions a t  these shock speeds a r e  s i m i l a r  t o  those a t  Vs = 8 km/sec. 

The Effec ts  of Reaction-Rate Uncertaint ies  

When the  estimated e r r o r s  which may be present  i n  r a t e  coef f ic ien ts  f o r  
the  carbon exchange reac t ions  a r e  reca l led  ( f i g s .  3 and 4), it i s  of i n t e r e s t  
t o  inves t iga te  t h e i r  e f f e c t s  on the  chemical behavior as given i n  f igures  5 t o  
7. For t h i s  purpose, the  shock conditions of f igu re  7 were chosen as an 
example s ince they a r e  the  most s ens i t i ve  t o  reac t ion- ra te  uncer ta in t ies  of a l l  
the  cases shown. F'rom the  l i m i t s  given by f igu res  3 and 4, r a t e  combinations 
were chosen which would maximize or minimize the  generated diatomic species  
concentrations s ince t h e i r  behavior i s  the  most s ens i t i ve  t o  exchange react ions.  
To obtain a '"aximum pro f i l e , "  maximum values were used f o r  t he  r a t e  coeff i ­
c i en t s  of a l l  react ions i n  question except 10. Figure 8 ( c )  shows reac t ion  10 
quickly reverses ,  thus it must be a minimum f o r  maximum CN formation. The 
"minimum pro f i l e s "  came from opposite considerat ions.  

The r e su l t i ng  thermodynamic p ro f i l e s ,  given by f igu re  l l ( a ) ,  a r e  r e l a ­
t i v e l y  insens i t ive  t o  the  r a t e s  used. In  p a r t i c u l a r ,  l o c a l  dens i ty  i s  the  
var iab le  most i n sens i t i ve  making i t s  measurement inadequate f o r  resolving 
chemical d e t a i l  i n  a complicated system such as t h i s  one (dens i ty  i s  commonly 
measured by interferometer or e lec t ron  beam techniques t o  obtain r a t e  informa­
t i o n ) .  In cont ras t  t o  t he  thermodynamic quan t i t i e s ,  f i gu res  U ( b )  and l l ( c )  
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show species  concentrations t o  exhibit high s e n s i t i v i t y  t o  the  rate va r i a t ions .  
This i s  p a r t i c u l a r l y  evident where t h e  t i m e  or dis tance  t o  a peak concentration 
and i t s  associated magnitude are examined. Thus, i n  the absence of an a b i l i t y  
t o  resolve chemical d e t a i l  by o ther  methods, considerable information may be 
gained by spectroscopical ly  measuring the t i m e  t o  peak CN concentration f o r  
example. This technique would no t  provide individual  reac t ion  rates nor def ine  
the  underlying mechanisms i n  the  customary d e t a i l  but  it would allow a more 
re f ined  reac t ion  system model t o  be es tab l i shed ,  su i t ab le  f o r  the needs of many 
predict ions i n  aerodynamic appl ica t ions .  

Contributions of t h e  O2 Reactions 

The ana lys i s  of experimental da t a  for a chemical system of many species  
and reac t ions  i s  always made simpler by removing as many ins ign i f i can t  var ia ­
b l e s  as possible  from the  t h e o r e t i c a l  model. When only the gross  thermo­
chemical behavior is of i n t e r e s t ,  removal of any species  or reac t ion  reduces 
the  number of reac t ion  rates which must be measured and a i d s  i n  reducing t h e  
numerical d i f f i c u l t i e s  encountered when ca lcu la t ing  such behavior.  

The s ignif icance of the contr ibut ions of 02 reac t ions  t o  the  remaining 
k i n e t i c  system becomes questionable when the r e s u l t s  i n  f igu re  8 are examined. 
A s  seen there ,  none of t he  O2 reac t ions  a re  important t o  the formation of any 
species  except 02. Thus, t he  f i v e  react ions containing O2 were de le ted  and the  
r e s u l t s  compared t o  nonequilibrium p r o f i l e s  including them. Figure 12 gives  
one example of such a comparison. The case shown (30 percent  C02) is  t h a t  d i s ­
playing the  g rea t e s t  e f f e c t  of a l l  the  ambient mixtures considered using nomi­
n a l  reac t ion  r a t e s .  The thermodynamic proper t ies  ( f i g .  l 2 ( a ) )  a r e  shown t o  
have a negl ig ib le  dependence on O2 w h i l e  t he  e f f e c t  on concentrations of other  
species  i s  small ( f i g .  1 2 ( b ) ) .  These small e f f e c t s  are not enlarged when o ther  
reac t ion  rates a r e  used except i n  t h e  extreme case where the O2 reac t ion  r a t e s  
a r e  maximized and the o thers  put t o  a minimum. However, tha t  s i t u a t i o n  i s  not 
se r ious ly  considered s ince experimental evidence favors  t h e  opposite case.2 It 
is  in t e re s t ing  t o  note t ha t  Howe and Sheaffer ( r e f .  4 )  a l s o  found the  inclusion 
of 02 unnecessary when considering 100 percent C O 2 .  

The e f f e c t  of de le t ing  t h e  O2 reac t ions  i n  a 50 percent C02 mixture w a s  
a l s o  invest igated a t  Vs = 4 km/sec where 02 appears i n  l a r g e r  equilibrium 
concentrations.  The e f f e c t s  a t  t h a t  speed a r e  l a r g e r  bu t ,  again,  they  appear 
pr imari ly  i n  the  species  concentrat ions.  Thus, f o r  shock speeds g rea t e r  than 
4 km/sec and reac t ion  rates equal t o  or grea te r  than those used here ,  02 may be 
omitted without ser ious e r r o r .  The results of such a de le t ion  are a 20- t o  
40-percent reduction i n  computing t i m e  and a s impl i f ica t ion  of t h e  reac t ion  
system from 1 4  t o  9 reac t ions ,  assuming reac t ions  8, 13, and 16 have a l ready  
been removed. 

- . .  

2''Experimental evidence'' refers t o  some unpublished preliminary measure­
ments of CN r ad ia t ion  i n t e n s i t i e s  made by James Arnold of the Ames Research 
Center.  The da ta  w e r e  taken behind incident  shock waves i n  a shock tube a t  
conditions close t o  those considered here and indicated a r e l a t i v e l y  rap id  
formation of CN. 



Cyanogen Kinet ics  

Special  a t t e n t i o n  i s  given here t o  t h e  k i n e t i c s  of CN because of i ts  
importance t o  the  t o t a l  rad ian t  emission from behind shock waves i n  these  gas 
mixtures. Figure 13 gives  an estimate of t he  CN concentration a t  i t s  peak 
value and the  l a b o r a t o r y t i m e  t o  reach t h e  peak f o r  a range of shock speeds and 
two gas mixtures. The nominal reac t ion  r a t e s  were used f o r  t h i s  ca lcu la t ion  
and the  5 percent CO, mixture w a s  omitted because of i t s  close p r o x i m i t y t o  the  
10 percent C02 case.  The possible  e r r o r  i n  t h i s  estimate may be evaluated by 
considering t h e  va r i a t ions  i n  de f in i t i on  of t he  CN peak as shown i n  f i g ­
ure l l ( b ) .  The percentage of s h i f t i n g  due t o  react ion-rate  unce r t a in t i e s  shown 
i n  f igu re  l l ( b )  a t  Vs = 8 km/sec i s  e s s e n t i a l l y  preserved a t  the  lower speeds. 
The e f f e c t  of ambient gas composition on CN peak concentration can be seen from 
f igure  13  t o  be f a i r l y  s i g n i f i c a n t .  Figure 14 compares the peak (as given i n  
f i g .  13) with t h e  equilibrium CN concentrations f o r  t he  dens i t i e s  used i n  t h i s  
study. It i s  of i n t e r e s t  t o  note ( c f . ,  f i g s .  14(a)  and 1 4 ( b ) )  t h a t  f o r  a 
given shock speed the  50 percent C02 mixture has a g rea t e r  tendency t o  achieve 
a peak CN concentration than the 10 percent C02 mixture; t h a t  i s ,  the  magni­
tudes of the  peak concentrations l i e  above t h e  equilibrium concentrations f o r  
a g rea t e r  range of ambient dens i t i e s  i n  t h e  50 percent C02 case.  Thus, non­
equilibrium CN r ad ia t ion ,  f o r  example, a t  a given a d i e n t  dens i ty  and shock 
speed, may be more s ign i f i can t  f o r  the  higher i n i t i a l  C02 concentration m i x ­
t u r e s  a t  l e a s t  up t o  50 percent C02 and p a r t i c u l a r l y  a t  shock speeds l e s s  than 
8 km/sec. This may be compared t o  conclusions drawn from equilibrium r e s u l t s  
(see,  e .g ., r e f .  7) which show maximum CN equilibrium concentrations t o  OCCUT 

when the  i n i t i a l  C02 content i s  9 t o  16 percent .  

Final ly ,  a t t e n t i o n  i s  ca l led  t o  t h e  t rends  shown i n  f igure  14 (b )  a t  
Vs < 5 km/sec. The extreme overshoot of the  CN concentration a t  these lower 
speeds i s  t y p i c a l  i n  regions where the  amount of CN present i s  most s ens i t i ve  
t o  temperature. It can be seen from the  equilibrium curves t h a t  small 
increases i n  Vs (o r  correspondingly, i n  temperature),  i n  t he  region of 
Vs = 5 km/sec, produces la rge  increases i n  equilibrium Concentration. Thus 
there  i s ,  i n  e f f e c t ,  a "cutoff temperature" below which the  CN concentrations 
a re  neg l ig ib l e .  If , as i n  the  case f o r  Vs < 5 km/sec, the  equilibrium temper­
a t u r e  i s  l e s s  than the  cutoff temperature but  the  nonequilibrium temperatures 
a r e  g rea t e r ,  t he re  w i l l  be extreme overshooting of the  CN concentration i n  the  
nonequilibrium region.  However, it should a l s o  be noted t h a t  although the  
r a t i o  of peak t o  equilibrium concentrations is  l a rge  a t  these conditions,  the  
magnitude of the  peak concentration i s  s t i l l  much lower than those achieved a t  
higher shock speeds. Thus, the  e f f e c t s  of nonequilibrium phenomena on CN rad i ­
a t i o n  i n t e n s i t i e s  ( f o r  example) may be more pronounced a t  shock speeds l e s s  
than 5 km/sec and a t  a given dens i ty  but t he  magnitude of the  i n t e n s i t y  w i l l  
a l s o  be very low. Similar behavior a t  higher shock speeds i s  found f o r  other  
minor species such as C 2 ,  N20, and N02. 

CONCLUDING FSMAFKS 

A s tudy of t h e  chemical k ine t i c s  behind normal shock waves in mixtures of 
C02 and N 2  has been made as a prelude t o  experimental inves t iga t ions .  Rnphasis 
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w a s  placed on shock conditions t y p i c a l  of those an t ic ipa ted  during en t ry  in to  
the  Martian atmosphere. A shock speed of 8 km/sec was studied i n  d e t a i l  but  
lower speeds are a l s o  discussed.  Ambient gas mixtures containing 5 ,  10, and 
50 percent C 0 2  and ambient dens i t i e s  of 10-6and 10-1times t h a t  of sea l e v e l  
were considered. 

A survey of current  methods of estimating reac t ion  r a t e s  became necessary.  
It w a s  found t h a t  most of t he  d issoc ia t ion  reac t ion  r a t e s  could be based on 
measured da ta  and t h a t  an adequate theory was ava i lab le  f o r  estimating those 
t h a t  could not .  Most of t h e  exchange reac t ions  required estimated r a t e s  and 
the  " t rans i t ion-s ta te"  approximation was used. The r e s u l t s  were compared with 
measured da ta  where ava i lab le ,  and agreement w a s  found t o  be sa t i s f ac to ry .  A 
scheme f o r  cor re la t ing  ac t iva t ion  energies and predict ing unknown values was 
a l s o  devised f o r  reac t ions  containing C ,  N ,  and 0 atoms. 

The species considered were CO,, N2, CO, NO, CN,  02, C ,  0, and N .  An 
o r ig ina l  system of 1-7bimolecular reac t ions  w a s  reduced t o  14 f o r  the  species 
above. Deletion of O2 and i t s  reac t ions  introduced only small e r r o r s  and 
f u r t h e r  reduced the  chemical system t o  9 reac t ions .  They a r e  

C 0 2  + M s C O  + O  + M  

N2 + M z 2 N + M  

NO + M z N  + O  +M 

C O + M % C + O + M  

C N + M Z C  + N  + M  

N 2  + C Z CN + N 

CO + N CN + 0 

CO + NO 2 C 0 2  + N 

The remaining O2 reac t ions ,  important mainly t o  the  production of O2 
i t s e l f  a r e  

O2 + M = 2 O  + M  

NO + 0 = 0 2  + N  

c02 + 0 z co + 02 

co +0%02 + c  
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The chemical k i n e t i c s  w e r e  found t o  a l low the  assumptions of binary 
sca l ing  over most of the  nonequilibrium region. This l e d  t o  a cor re la t ion  of 
t he  dependence on ambient dens i ty  and allowed density-independent results t o  be 
presented except near equilibrium. 

Certain generated species  such as C O Y  NO, CN, and 02 w e r e  shown t o  over­
shoot t h e i r  equi l ibr ium concentrations f o r  most ambient d e n s i t i e s  of i n t e r e s t  
i n  t h e  f l i g h t  regime. This was p a r t i c u l a r l y  the  case f o r  CN which suggests 
s ign i f i can t  nonequilibrium rad ian t  emission a t  low d e n s i t i e s .  

The e f f e c t s  of ambient gas composition on t h e  l eng th  o r  durat ion of t h e  
nonequilibrium region behind t h e  shock wave w e r e  shown t o  be s m a l l .  The pr in­
c i p a l  d i f fe rences  i n  thermochemical p r o f i l e s  between the severa l  ambient gas 
compositions are due t o  changes i n  r e l a t i v e  magnitudes of t he  p r o f i l e  end 
poin ts  r a t h e r  than the t i m e  o r  d i s tance  required t o  reach near-equilibrium. 

Admitting e r r o r s  of p lus  or  minus an order  of magnitude i n  the  estimated 
reac t ion  rates caused only s m a l l  d i f fe rences  i n  t h e  predicted thermodynamic 
p ro f i l e s .  The species  concentration p r o f i l e s ,  however, are very sens i t i ve  t o  
such e r r o r .  Measurement of t h e  t i m e  t o  peak concentration of an iden t i f i ab le  
species  w a s  shown t o  be a possible  means of e s t ab l i sh ing  rate information. 

Special  a t t e n t i o n  w a s  given t o  the  k i n e t i c s  of CN. It appears t o  be one 
of t he  species  most s ens i t i ve  t o  ambient gas composition and react ion-rate  
unce r t a in t i e s .  CN displayed a g rea t e r  tendency t o  overshoot i t s  equilibrium 
concentration i n  increasing ambient proportions of C02 t o  30 percent C02. 

A t  shock speeds less  than 5 km/sec, t h e  CN concentrations are small i n  the 
nonequilibrium region but  s t i l l  several  orders  of magnitude g rea t e r  than t h e i r  
equilibrium value.  The ex ten t  of concentration overshoot decreases with 
increasing shock ve loc i ty  but remains s ign i f i can t  at  t h e  shock speeds of 
i n t e r e s t  f o r  e n t r y  i n t o  the  Martian atmosphere. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f . ,  Oct. 3 ,  1965 
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TABU I .- PRELIMINARY REACTION S Y S T E M  

NO 

~ ~~ 

Reaction 


CO2t-M Z CO+O+M 

N2+M 2 2N+M 

NO+M N+O+M 

C O W  c+O+M 

CN+M C + N W  

02W 2 0 + M  

NO+O 5 O2+N 

N 2 4 2  $ 2NO 

N 2 + 0  Z NO+N 

N z + C  f CN+N 

CO+N % CN+O 

c o z + N  cN1-02 

N2+CO f CN+NO 

CO+NO % C 0 2 + N  

c o 2 4  z c o a 2  

2co z c02,x 

co+o f 02i-C 

Assumed reaction­

1* 

k (OK) 

34360 

113350 

75560 

128960 

94140 

59390 

19680 

61600 

38000 

31560 

45800 

49560 

92!010 


20980 

18210 

72390 


69570 
_____ 

* kf =~exp(-%) kT mole-secm3 



TABLE 11.- SOME MOLECULAR CONSTANTS 


h m a=1 a=3 
~~ ~ 

*Nz 

C 12.011 
0 16.ooo 
N 14.007 

co 28.011 2.78 3122 
NO 30.007 2.45 2 740 
CN 26.018 2 -73 2976 
N 2  28.014 5.78 3395 
02 32 .ooo 4.16 22 74 
c2 24.022 4.70 2362 

*co2 44.011 1.12 3380 960 
0 44.014 0.60 31-99 647 

**NO2 46.007 0.36 2332 932 
~~ ~ 

%inear  molecule 
**Nonlinear molecule 
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TABU 111.- EQUILIBRIUM SPECIES CONCEnrTRClTIONS (y
J
. )  FOR V, = 8 h / s e c  

I 
, Ambient 1 5 percent C02 - 95 percent N2;10 percent C 0 2  - 90 percent N2 50 percent C02 - 30 percent Nzmixture 

( 

I - 10-6 I 10-1 10-6 10- 10-6 10-
' Po I 

C 4.41-2 3.60-2 7.87- 6.49-2 2.35-1 1.60-1 

0 9 .13-2 9.06-2 1.77-1 1.74-1 7. 35-1 6.69-1 

N 1-35 9.46-1 1.26 8.64-1 7 .99-1 4.90-1 

co 5 . 6 r 3  4.75-3 z?. .17-2 1.96-2 2.64-1 3 . O p  

, NO 9 .67-5 3 .50-4 2.26-2 

CN ~ 8.0y4 2.62-3 3.69-2 

02 3.90-8 1.94-5 1.50-7 7.74-5 2.61-6 1.28-3 

N 2  2.80-1 4.79-1 2.72-1 4.64-1 1.02-1 2.32-1 

I co2 I 
2.12-9 3.20-7 i . 0 3 - ~  2 .61-6 2 -67-7 1.86-4 

0.469 0.522 

I 

Pl 


Note: A nwnber such as 0.0025 appears as 2 . y 3  in  the t ab le .  



28 




composite 

composite 

9­


8­ 


7­


6­

- 5 -
Y 

0 
(r
0
- 4 ­

3 ­

2 -

Ref. 3 ,  Ref. 3 ( M  =O) 
experimental 

temperature range _____------
I- - Eq.(5) 
1-

Ref .8  (M=N,,N,NO) 

Ref. 3 ( M = A r , N ,  NO)  

O,+M= 2 0 + M  

experimental 
temperature range 

7-

I - I I I I I I I I I I 

(a) O2 dissociation. 
9-

8- Ref. 3 ,­
6- 


A- 5­

0 

0, Ref. 3 ( M = Ar ,O ,O, ,NO) 
0 
- 4 - Ref. 8 ( M  = O,, 0 ,  NO) 

3­

2 - N, +M =2 N +M 

I I I I I I I I I I 
'0- 2 4 6 8 I O  12 14 16 18 20 

T ,  IOOOOK 

(b) N 2  dissociation. 

Figure 1.-Comparison of dissociation reaction rate coefficients. 
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Figure 1.- Concluded. 
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Figure 2.- C02 dissociation rate coefficients. 




------ 

------ - - 

Transition state theory 
Measured values or 
other estimates 

12 -	 Region used in this study 
for Vs=8 km/sec 

IO- N+CO-CN+O (ref.5estimate) 
.-.a+_-&* 

.. _ _ _ _ _ _ _ _ _ _ _ - ­
ia 
m2 8  
-0 _____-----­

6-
_____----\ O+N,-NO+N (ref.3) 

0 + NO -O,+ N (ref. 3 )  

4 L  I I I I I I I I I I 

(a)  Reactions of t h e  type A+B-C + products.  

I O  ­

8 - 0,+ N,O- N +NO,(ref. 2) 
0 

m 
0 
- 6  


4 L  I I I 

(b)  Reactions of 

I4­

12 -
N2+02- 2 NO 

IO 


0 
m 

-s 6  

4 

O+CO,- CO+O,(ref. s’estimate) 
I I I I I I I 

the  type A+B-C.D --f products.  

NO+N,- N,O +N (ref. 2) 

I I I I I I I I I I 
O;jl 4 5 

‘os,,T 

( e )  Reactions of t he  type A - B t C  -D -+ products.  

Figure 3.- Frequency f a c t o r s  f o r  some exchange reac t ions .  
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Figure 4.- Endothermic act ivat ion energy correlation. 
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Figure 5.- Nonequilibriwn prof i les ;  V, = 8 km/sec i n  5 percent C02 - 95 percent N2. 
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(b) Species concentrations. 

Figure 3 .  - Concluded. 
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Figure 6.- Nonequilibrium prof i les ;  Vs = 8 h / s e c  i n  10  percent C02 - 90 percent N2. 



(b)  Species concentrations. 

Figure 6 .  - Concluded. 
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( a )  Thermodynamic propert ies  . 
Figure 7.- Nonequilibrium prof i les ;  Vs = 8 km/sec i n  30 percent CO2 - 30 percent N 2 .  



(b)  Species concentrations. 

Figure 7. - Concluded. 
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(a )  CO production. 

Figure 8.- Species production rates f o r  individual reactions;  V, = 8 km/sec i n  50 percent C02 ­
50 percent N2, pl/po = 



-- 

@I 
@ N O + M = N + O + M  

\ 


NO producing reaction 
NO using reaction 

Reaction too low to be shown: 

N,+CO s C N  + NO 

I I I I I I I l l  
IO-^ 

Y 

(b) NO production. 

Figure 8.- Continued. 
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Figure 8.- Continued . 
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Figure 8. - Concluded. 
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Figure 10.-Concluded. 
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uncertain react ion rates; V, = 8 h / s e c  i n  50 percent C02 - 50 percent N2, 
pl/po = 10-6. 
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(a)  Thermodynamic properties.  

The e f fec t  of deleting O2 reactions; Vs = 8 ka/sec i n  50 percent C02 - 30 percent N2, 
p,/po = 10-6. 



ul 
c 


/ 

(b) Species concentrations. 

Figure 12.- Concluded. 
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Figure 13.- Laboratory time and magnitude of t h e  peak CN concentration using 
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Figure 14.- Peak and equilibrium CN concentrations. 
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